Section 5.2: MULTIPLYING POLYNOMIALS When you are done with your homework you should be able to... - π Use the product rule for exponents - π Use the power rule for exponents - π Use the products-to-power rule - π Multiply monomials - π Multiply a monomial and a polynomial - π Multiply polynomials when neither is a monomial WARM-UP: Add or subtract the following polynomials: a. $$\left(-22r^7+6r^3-r^2\right)-\left(2r^7+r^2-1\right)$$ b. $\left(8x^4-x^3-x^2\right)+\left(-8x^4+x^3\right)$ b. $$(8x^4 - x^3 - x^2) + (-8x^4 + x^3)$$ #### THE PRODUCT RULE FOR EXPONENTS We have seen that _____ are used to indicate _____ multiplication. Recall that $3^4 =$ ______. Now consider $3^4 \cdot 3^2$: ### THE PRODUCT RULE When multiplying _____ base, _____ the _____. Use this _____ as the _____ of the base. Example 1: Simplify each expression. a. $2^5 \cdot 2^3$ $b. x^2 \cdot x \cdot x^4$ THE POWER RULE (POWERS TO POWERS) | When an | is | s to a | |---------|----------|-----------| | ,, | the | Place the | | of the | on the _ | and | | the | | | Example 2: Simplify each expression. a. $(4^2)^3$ **b.** $(x^{12})^5$ #### THE PRODUCTS-TO-POWERS RULE FOR EXPONENTS When a _____ is _____ to a _____, ____ each _____ to the _____. Example 3: Simplify each expression. a. $$(-2y)^5$$ b. $$(10x^3)^2$$ #### MULTIPLYING MONOMIALS To _____ with the _____ base, _____ the _____ the and then multiply the _____ rule for _____ to multiply the ______. Example 4: Multiply. a. $$(8x)(-11x^4)$$ a. $$(8x)(-11x^4)$$ b. $(7y^3)(2y^2)$ c. $$\left(\frac{2}{5}x^4\right)\left(-\frac{5}{6}x^7\right)$$ # MULTIPLYING A MONOMIAL AND A POLYNOMIAL THAT IS NOT A MONOMIAL To _____ a ____ and a _____, use the _____ property to _____ each ____ of the _____. Example 5: Multiply. a. $$3x^2(2x-5)$$ b. $$-x(x^2+6x-5)$$ ## MULTIPLYING POLYNOMIALS WHEN NEITHER IS A MONOMIAL Multiply each ______ of one _____ by each _____ of the other polynomial. Then _____ terms. Example 6: Multiply. a. $$(x+2)(x+5)$$ b. $$(2x+5)(x+3)$$ c. $$(x^2-7x+9)(x+4)$$ Example 6: Simplify. a. $$3x^2(6x^3+2x-3)-4x^3(x^2-5)$$ b. $$(y+6)^2 - (y-2)^2$$ ## **APPLICATION** a. Express the area of the large rectangle as the product of two binomials. b. Find the sum of the areas of the four smaller rectangles. c. Use polynomial multiplication to show that your expressions for area in parts (a) and (b) are equal.